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ABSTRACT

This paper describes a 5-kb/s spread-spectrum
modem with a 1.275-MHz chip rate for mobile
satellite communications. We used a Viterbi

decgder with a coding gain of 7.8 dB at a BER of
10 "J to decrease the required received power. This
reduces the cost of communication services. The

spread spectrum technique makes the modem
immune to terrestrial radio signals and keeps it
from causing interference in terrestrial radio
systems.

A class-C power amplifier reduces the modem's
power consumption. To avoid nonlinear distortion
caused by the amplifier, The envelope of the input
signal is kept constant by adding quadrature
channel signal to the BPSK signal. To simulate the
worst case, we measured the modem's output
spectrum using a limiting amplifier instead of the
class-C amplifier, and found that 99% of the
spectral power was confined to the specified 2.55
MHz bandwidth.

1. INTRODUCTION

Since the lower power spectral density of the
spread-spectrum technique reduces interference
between satellite and terrestrial communications

systems, the technique has the advantage of
reduced required received power. This reduces
communication cost in satellite communication

systems. The coding gain in forward error
correction techniques such as in the Viterbi
decoder also reduces received power. The service
cost of a mobile satellite communication system
also depends on the power consumption of the
mobile terminal. Although the high efficiency of a
class-C amplifier effectively reduces power
consumption, the output spectrum of the usual
binary phase-shift keyed (BPSK) signal is

changed significantly due to nonlinear distortion.
To avoid such distortion, the envelope of the
input signal must be kept constant. Various
constant-envelope BPSK (CE-BPSK)modulation
techniques have been proposed 1-3. When used
for mobile satellite communications systems,
however, these techniques have the following
problems: (1) Remaining envelope variation is
about 3 dB due to imperfect suppression, (2) the
supplementary signal reducing the envelope
variation generates a line spectrum which
increases interference with terrestrial

communication systems, and (3) interference
between the BPSK signal and supplementary
signal makes demodulation difficult.

To overcome these problems, we propose an
improved CE-BPSK modulation scheme which
features: (I) digital signal processing for
accurate supplementary signal generation, (2) a
polarity inversion switch to remove the line
spectrum of the supplementary signal, and (3) a
spread-spectrum technique to prevent interference
between the supplementary and BPSK signals. We
confirmed the improved output spectrum by
computer simulation. The measured BER
performance and output spectrum of the modem
showed little degradation, even though a limiting
amplifier with a more nonlinear characteristic was

substituted for class-C amplifier.

2. CE-BPSK MODULATION

2.1 Generation of Constant Envelope Signal

Although the high-efficiency of the class-C
amplifier reduces power consumption in a
mobile satellite communications terminal, this

amplifier's highly nonlinear output
characteristic requires that the input signal have a
constant envelope. We studied modulation in
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which a constant-envelope BPSK signal is
obtained by adding a supplementary quadrature
channel signal. The conventional way of obtaining
the constant-envelope signal restricts the
supplementary signal to the upper half of the
phase-state vector diagram 1, causing an offset in

the constellation. Adding a supplementary signal
generates a line spectrum which can interfere

with terrestrial radio systems. The technique we
propose makes positive and negative polarities of
the supplementary signal equally probable, so
adding the supplementary signal produces no
offset or line spectrum.

The conventional circuit for generating the
supplementary signal consists of analog circuits
which make precise squaring and rooting difficult,
requiring the following approximation to be used:

Q(t) = +(A-I(t) 2 )1/2
:A-lI(t) l (1)

A: Constant,
I(t): BPSK signal

Q(t): Supplementary signal

The envelope of the modulated signal may deviate
as much as 3 dB. Digital signal processing
generates the supplementary signal our method
uses, easily satisfying the following equation:

Q(t) = +(A-I(t)2) 1/2 (2)

The block and phase-state vector diagrams of
our constant-envelope modulator are shown in
Figs. 1 and 2, and the block diagram of our
circuit for generating the supplementary signal in
Fig. 3. When the spread-spectrum signal is
demodulated, the signal is remapped by
correlation with the PN code. The supplementary
signal can thus be removed in the remapping circuit
by generating the supplementary signal with a
small cross-correlation to the PN code at the
modulator. This makes the CE-BPSK demodulator

the same as the conventional BPSK demodulator,
simplifying demodulation.

2.2 Polarity Switching

The conventional way of obtaining the
constant-envelope signal produces an offset in the

constellation and the addition of the supplementary
signal generates a line spectrum. To remove the
offset, we ensured that positive and negative
polarities of the supplementary signal were
equally probable. This required polarity switching.
Switching the polarity when the supplementary
signal amplitude is large varies the transient
amplitude from positive to negative, or vice

versa. Transient variation of the supplementary
signal amplitude causes out-of-band radiation. To

avoid such variation, the polarity is switched
when the supplementary signal amplitude is
smaller than threshold Th.

3. SIMULATION

We used computer simulation to evaluate the

performance of our proposed technique. To raise
the transmitter power efficiency, we must

reduce the power of the supplementary signal.
If the rolloff factor decreases, the maximum
amplitude of the BPSK signal increases. In our
CE-BPSK modulator, the quadrature signal
supplements the difference between the maximum

amplitude and minimum amplitude of the BPSK
signal. Thus, if the rolloff factor decreases, the
supplementary signal power increases. The 100%

rolloff filter we used for spectrum shaping raised
the transmitter's power efficiency, as shown in
simulation (Fig. 4). The transmitted power
increases 1.7 dB when the 100% rolloff filter is

used. Since a class-C amplifier reduces power
consumption at least 3 dB, CE-BPSK modulation

reduces power consumption by at least 1.3 dB.
Using computer simulation we calculated the

power spectrum of the CE-BPSK signal after the
limiting amplifier (Fig. 5). 99% of the spectral

power was confined to the specified 2.55 MHz
bandwidth using CE-BPSK modulation. 91% of
the spectral power was confined to the same
bandwidth using BPSK modulation. Out-of-band
radiation performance is improved markedly by
adding the supplementary signal to the BPSK
sigr_al through a nonlinear amplifier.

In our spread-spectrum modulator, one cycle
of the PN code sequence is not inverted when the
information is "one," and one cycle of the
sequence is inverted when the information is
"zero." The PN code sequence modulated by the
information is transmitted. At the demodulator,
when the cross correlation between the received

signal and the PN code is positive, "one" is
received and, when it is negative, "zero" is
received. Interference signal having no cross
correlation to the PN code are removed 4.

However, An interference signals similar to the
PN code cannot be removed. In the CE-BPSK

demodulator, the received supplementary signal
becomes the BPSK interference signal. To
estimate degradation due to the interference
signal, we calculated the cross correlation between

supplementary signal and the PN code (Fig. 6).
Because the cross correlation is negligible, we
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assume that the degradation in BER performance
due to interference is negligible.

4. MODEM

Table 1 lists the system parameters of the
CE-BPSK spread-spectrum modem, which

operates at a 1.275-MHz chip rate and a 70-MHz
IF frequency. The information rate is 4.8 kb/s
without forward error correction and 2.4 kb/s

with it. Adding unique words increases the data
rate of the modem to 5 kh/s. We used direct

sequence modulation to spread the spectrum.
Because the PN code length is 255, the process
gain is 24 dB. The lower spectral power density
of the spread-spectrum technique reduces
interference with terrestrial radio systems, and
the spread-spectrum demodulator reduces
interference from terrestrial radio systems 4.

4.1 Modulator

The modulator (Fig. 7) encodes the forward
error correction code, inserts unique words into
the transmitted data stream, and performs spread
spectrum and CE-BPSK modulation. We used

digital signal processing to generate the
supplementary signal and to shape the BPSK
signal spectrum. The CE-BPSK signal has a
small envelope variation.

4.2 Demodulator

The demodulator (Fig. 8) remaps the spread
spectrum signal, removes the supplementary
signal, demodulates the BPSK signal, and
decodes the forward error correction code. The

BPSK signal can be demodulated after
analog-to-digital conversion by digital signal
processing. A Costas loop was implemented in
software using a digital signal processor.

4.3 Forward Error Correction

The high-coding gain of the Viterbi decoder
enables forward error correction convolutional

encoding to be used. We selected a code rate of
1/2. The Viterbi decoder uses an 8-level soft

decision and a 7-bit constraint length. Its path
memory circuit uses p,3th tracing, so the single
LSI decoder is compact s.

5. RESULTS OF EXPERIMENT

5.1 Output Spectrum

To verify the performance of CE-BPSK
modulation, we fed the CE-BPSK signal through
a limiting nonlinear amplifier instead of a class-C
amplifier, (Figs. 9 and 10). Signal spectra at the
modulator output are shown Figs. 11 and 12 for
comparison. When BPSK modulation was used
with the limiting amplifier, the sidelobe signal
power increased. When CE-BPSK modulation
was used with the limiting amplifier, the
percentage of the bandwidth signal power (2.55
MHz) was 99% of the total signal power, the
same as the value obtained with the linear

amplifier. These results show that out-of-band
radiation is markedly improved by adding the
supplementary signal to the BPSK-modulated
signal when a nonlinear amplifier is used.

5.2 BER Performance

The BER versus carrier-to-noise-density ratio

(C/N0) was measured with IF back-to-back
connection for both the linear and limiting
amplifiers (Fig. 13). The BERs shown are with
and without forward error correction and

supplementary signal. When the linear amplifier
was used, the difference in BER performance
between CE-BPSK and conventional BPSK was

1.8 dB, almost the same as the contribution of the
supplementary signal (1.7 dB). Thus, interference
between the BPSK and supplementary signals is

negligible. The coding gain with forwgrd error
correction was 7.8 dB at a BER of 10 "3, almost
the same as the 8-dB theoretical value. When the

limiting amplifier was used, the modem has
almost the same BER performance as that using
the linear amplifier.

6. CONCLUSION

We developed a spread-spectrum modem using
CE-BPSK modulation for mobile satellite

communications. The constant envelope signal
enables a class-C amplifier to be used to ensure
decreased power consumption and increased
transmission power. The spread-spectrum modem
reduces interference with terrestrial radio

systems. We verified the effectiveness of our
technique for spread spectrum communication by
measuring the modem's output spectrum and BER
performance. Our results show this modem to be
promising for use in mobile satellite
communications.
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Table 1

Modulation:

Initial synchronization:
Tracking:
IF frequency:
Data rate:

Modem bit rate:

Chip rate:
Process gain:
Forwarderror correction:

Carrier-to-noise density ratio:

Modem parameters

Spread-spectrum with CE-BPSK

Digital matched filter

Delay locked loop

70 MHz
4.8 kb/s without FEC
2.4 kb/s with FEC
5 kb/s
1.275 Mb/s
24dB

R = 1/2, K = 7 soft-decision
Viterbi decoder
40 dB.Hz to 60 dB.Hz
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